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SUMMARY

The concept of the analytic platform inertial navigation system is
reviewed and a summary of the construction and operation of an ideal
Single Axis Reference and an ideal Pendulous Integrating Gyro Accelero~
meter (SAR and PIGA) is made in Chapters I and II. 1In Chapter III,
four different methods are presented that relate the vehicle coordi-
nates to those of the inertial reference and the mathematics,that
enable one to calculate these transformations from the angular rates
of the vehicle,are presented. Matrix operations and numerical
integration techniques are presented in Appendices A and B as a review
and as an aid in the calculation of the rotational transformationms.

The orthogonality and normality conditions are presented in Appendix C.
Appendix D contains the definition of the orientation of the space=~

fixed and vehicle-fixed coordinate systems.
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I. INTRODUCTION*

D. W. Kelly

Inertial navigation** is concerned with the knowledge of
where a vehicle is with respeét to an inertially-fixed coordinate
system. The only inputs to a classical inertial navigational device,
other than initial conditions of position and velocity, are angular
velocities and linear accelerations, which are measured by self-
contained instruments on-board the vehicle. The definition of
inertial navigation can be enlarged to include star-trackers, since

the line of sight (LOS) to a star is an inertial reference line.

1,2,3,4

ized Platform
The most common method of implementing an inertial navigation

system utilizes a stabilized platform. The stable-platform or

stable-table is a device which has the ability to keep a set of

orthogonal measuring axes mechanically aligned with a given set of

inertial axes, regardless of the angular movement of the vehicle. This

alignment is accomplished by means of a gimballing system, torquers,

servoloops and gyroscopes.

*Al11l references are located at the end of the report.

**Inertial navigation is used on ballistic missiles, space boosters,
tanks, aircraft, spacecraft, submarines, and is proposed for moon
rover vehicles.
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Figure I-la shows a typical three gimbal platform layout with
platform gimbals, gyroscopes, and accelerometers. Any angular motion
of the innermost platform gimbal is sensed by the gyros. Sensors on
the gyros provide a signal that is fed to tﬁe torque motors, which in
turn maintain the space-fixed position of the inner gimbal. The
accelerometers mounted on the inner gimbal sense the translational
acceleration of the vehicle in the space~fixed coordinate system (the
coordinate system of the inner gimbal).

The guidance computer uses the outputs of the accelerometers,
along with the initial values of velocity and position, to calculate
the instantaneous velocity and position of the vehicle relative to the
inertially~-fixed coordinate system. Figure I-2 shows a simplified
block diagram of the system.

This is an excellent system inasmuch as it accomplishes its
purpose to a high degree of accuracy, but it has disadvantages. By
necessity the platform and gimballing arrangement is spherical, which
does not lend itself to economical packaging. It is rather heavy
and requires a large power supply for the torque motors. It also
has an operational limitation due to gimbal lock, a condition in
which all of the gimbal planes are coplanar, leaving the inner gimbal
with only two degrees of freedom. If, under this condition, a rotation

is attempted about an axis perpendicular to this plane, the inner
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gimbal is forced to move about this perpendicular axis. Gimbal lock
can be eliminated by the introduction of a redundant gimbal, and by
limiting the movement of one gimbal so that the condition of coplanar
gimbal planes cannot exist. Figure I-1b is a typical four-gimbal
system.

Because of these disadvantages, it would be desirable to replace
the present system with a system that would eliminate the platform,
thereby removing the bulky spherical gimballing arrangement and the
large power supply. The new system must be capable of performing
the same operations as the stable platform with the same degree of
accuracy. The analytic platform discussed in the next section is a

system proposed for this purpose.

B. Analytic Platform ’°’ *%»°

The remainder of this report is a study of a system in which
the mechanically stable platform is replaced by an analytic platform.
The sensors are mounted directly to the vehicle and their outputs are
fed into a coordinate transformation computer. Figure I-3 is a
simplified block diagram of the analytic platform system. The outputs
of three of the sensors are éx’ éy, and ;z, which are the angular rates
of the vehicle with respect to the vehicle-fixed coordinate system.

These outputs are used to generate a matrix that can in turn be used

to transform the linear acceleration sensor outputs from the vehicle
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coordinate system to the space-fixed coordinate system. The outputs

from the coordinate transformation computer are the same as the
outputs of the stable platform system, hence the name '"analytic
platform system'". The remaining operations are the same as in the
| stable platform systems, as can be seen from a comparison of Figures
I-2 and I-3.

Although the removal of the stable platform from the navigation
system eliminates some disadvantages, it introduces others. This
report is concerned with the problems of implementing the analytic

platform.



I1. GYROSCOPIC SENSORS

C. L. Connor, D, W. Kelly, and J. L. Lowry

A gyroscope may be defined broadly as a body rotating at a high
angular velocity about an axié which is called its spin axis. The
rotating body has the property of resisting any effort to change the
direction of its spin axis, thus providing a reference from which
either angular displacements or angular rates may be measured. The
operation of a gyroscope is based on the following principles of
gyrodynamics:

1. The gyro spin axis tends to remain fixed in space.

2. When a torque is applied to the gyro, a precession or angular
rate results. This precession is a rotation about an axis
orthogonal to both the gyro spin axis and the torque vector.
The precession continues until the torque is removed or until
the spin vector becomes aligned with the torque vector.

Precession of a rotating body is shown in Figure II-1.

There are many different types of gyroscopes which are usually
classified according to construction. This chapter will discuss an
ideal floated- type gyroscope known as a Single Axis Reference. It
will also include a discussion of the special construction of a
floated-type gyroscope for the purpose of measuring acceleration.

9
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A, Operétionlo’11

The Single Axis Reference (SAR) is a device which measures angular
displacement about a single reference axis through the center of the
device. The SAR maintains this reference by means of the principles of
gyrodynamics.

The SAR's construction is shown in Figure II-2 and is centered around
the gyro wheel or rotor. The gyro wheel, due to its very nearly comnstant,
high angular momentum, establishes the gyroscopic effects exhibited
by the gyro. The gyro wheel is bearing mounted to, and is sealed inside
of, the inner cylinder of the SAR. The inner cylinder of the SAR is
suspended in a very nearly frictionless gas bearing inside the outer
cylinder* of the SAR. The outer cylinder is mounted by trunion bearings
to the housing, and is free to turn about the input axis IA (see
Figure II-2). A null position pickoff device is mounted to the outer
cvlinder and is positioned so that it is sensitive to angular dis-
placements of the inner cylinder with respect to a predetermined null
position between the inner and outer cylinders. A torque motor (torquer)
is mounted in the housing and can torque the outer cylinder about
IA, producing a torque vector along IA, Also mounted along IA is
an encoder, a device that measures the relative angular displacement
between the housing and the outer cylinder. The encoder is described

in the next section.

*The inner cylinder and outer cylinder are sometimes referred to as the
float and case respectively.
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To understand the operation of an ideal SAR, consider its
reaction to angular motion of the housing about the three axes, TA,

OA and the spin reference axis. In this discussion it is assumed that
the housing of the SAR is mounted to a heavier body whose motion will
not be affected by the output of the torque motor of the SAR.

If there is an angular motion of the housing about IA, the outer
cylinder will remain fixed with respect to the spin axis and the
housing will move freely. 1If, due to friction or drag, the outer
cylinder is torqued by the movement of the housing,then the gyro wheel
and the inner cylinder will precess about OA. This precession will
be sensed by the null position pickoff mounted at the end of the inner
cylinder. The pickoff produces an electrical signal proportional to
the angle sensed. This signal is amplified, compensated, and fed to
the torquer which produces a torque on the outer cylinder about IA.
This torque will oppose exactly the original torque due to friction,
thus compensating for friction. The movement of the housing with
respect to the outer cylinder will be sensed by the encoder and the
encoder will give an output from the SAR.

If there is an angular motion of the housing about OA, the outer
cylinder will move with the housing, while the inner cylinder will
remain fixed. The angular displacement of the outer cylinder with
respect to the inner cylinder will be sensed by the null position
pickoff and an electrical signal will be generated. This signal is
amplified, compensated and fed to the torquer which produces a torque

on the outer cylinder about IA. This torque causes the gyro wheel and
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the inner cylinder to precess about the OA, and to follow the angular
motion of the housing. The alignment of the inner and outer cylinders
with respect to the housing will remain the same, and the encoder will
not give an output.

If there is an angular motion of the housing about the spin
axis, both the outer cylinder and the inner cylinder will move with
the housing. The alignments of the inner cylinder, the outer cylinder
and the housing with respect to each other will remain the same, and
the encoder will not give an output.

Translational motion or acceleration will not effect the output
of the SAR, since it is designed with the center of mass of the gyro
wheel, and the center of mass of the inner and outer cylinders, located
at the intersection of IA, OA and the spin reference axis. The forces
acting on the gyro wheel and outer cylinder due to translational
acceleration will always produce zero torque, and, therefore, will not
cause an angular motion of any part of the SAR.

The only motion of the SAR that will produce an output from the
encoder is angular motion about IA. Therefore, the SAR is a single
axis reference that measures angular displacement of the housing about
its input axis, and its output is unaffected by any other motion,
translational or rotatiomnal.

The Pendulous Integrating Gyro Accelerometer (PIGA) is a device
which measures translational acceleration along an axis through the

center of the device. The construction of a PIGA is the same as that

of a SAR (see Figure II-2), except that it has an asymmetrical construction
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that shifts the center of mass of the gyro wheel along its spin axis a
specific distance from the intersection of IA, OA and the spin axis.

To understand the operation of an ideal PIGA, consider its reaction
to translational acceleration along the three axes, IA, OA and the spin
reference axis. Again, as in the discussion of the SAR, it is assumed
that the housing of the PIGA is mounted to a heavier body whose motion will
not be affected by the output of the torque motor of the PIGA.

If there is a translational acceleration along IA, the gyro wheel
will experience a torque about OA due to the force of acceleration
acting on the pendulous mass of the inner cylinder. This torque about
OA will cause the outer cylinder to precess about IA at an angular
rate that is proportional to the torque produced by the acceleration,
and, therefore, proportional to the acceleration. Friction, or drag,
between the housing and the outer cylinder is compensated for in the same
manner as in the SAR. The output of the encoder is a measure of the
angular displacement between the housing and the outer cylinder, and
will be proportional to the integral of the acceleration.

If there is a translational acceleration along OA, the gyro
wheel will experience a torque about IA, This torque will cause the
inner cylinder to precess about TA, thus moving it away from its null
position. The pickoff device will detect this movement and will produce a
signal that is amplified, compensated and fed to the torque motor. The torque
motor will produce a torque about IA that will balance out the torque due
to acceleration in the OA direction. The final alignment of the inner
cylinder, the outer cylinder and the housing with respect to each other

will not be affected, and the encoder will not give an output.
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If there is a translational acceleration along the spin axis, then
the inner and outer cylinders will be accelerated without experiencing
torques about OA or IA. The alignment of the inner cylinder, the outer
cylinder and the housing with respect toeach other will remain the
same, and the encoder will not give an output.

The PIGA will react to rotational motion in exactly the same manner
as did the SAR; that is, the PIGA will give an output for rotational motion
about IA, but will not be affected by rotational motion about OA or about
the spin reference axis. The output of the PIGA is a measure of the angular
displacement between the housing and the outer cylinder. The rate
of this angular displacement is proportional to the acceleration of the
PIGA along IA. The angular displacement will, therefore, be proportional
to the integral of the acceleration along IA of the PIGA plus the angular
rotation of the housing of the PIGA about TA.

In order to use the PIGA as an accelerometer, the angle of rotation
must be substracted from its output. The PIGA will also measure the
acceleration due to gravity, and, therefore, the output must be corrected
for gravity.

When a PIGA is used on a stable platform, it will not experience
rotational motion, and its output, after correction for gravity, will
be the integral of the translation acceleration of the platform along
the input axis of the PIGA. When the PIGA is mounted directly to the
vehicle, its output must be corrected for angular rotation as well as for

gravity. This correction will not present a problem since in the proposed
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analytic platform, each PIGA will be used in conjunction with an SAR.
The angular rotation, which will be measured by the SAR, gives the

necessary information to correct the PIGA reading.

B. Quantization12’13

The output of an SAR or of a PIGA can be obtained from an encoder
that measures the angular displacement of the housing with respect to
the outer cylinder. A typical input-output relation of an encoder is
shown in Figure II-3. The output of the encoder is a pulse each time
the angular position changes by a discrete amount (one pulse/one
quantization level). The output pulses may be positive or negative
corresponding to the direction of angle change. Due to the nature of
the detectors used in an encoder, hystersis, as shown in Figure TII-3,
exists in the detection of the angle of rotation. Typical quantization
levels for SAR's are from 5 to 20 arcseconds.

Figure II-4 is a simplified drawing of a typical encoder. For a
better understanding of the location and operation of the encoder in
conjunction with the SAR, refer to Figure II-2. The coded discs are
alternately transparent and opaque. One disc has (2n) segments and
the other has (2n + 2) segments. One of the discs is mounted on the
shaft of the outer cylinder and the other is attached to the housing.
As the outer cylinder and housing rotate with respect to each other,
the phototransistors detect the variation in the intensity of the
light that passes through the discs. As one disc rotates 360/n degrees

with respect to the other, the phototransistors will detect 360 degrees
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of rotation of the maximum light intensity point of the light that
passes through the discs. The rotation of the maximum light intensity
point is due to the vernier effect between the opaque segments of the
two discs blocking the passage of light. The electronic circuits shown
in Figure II-4 convert the outputs of the phototransistors to pulses

that represent the angle of rotationm.




III. TRANSFORMATION MATRIX
D. W. Kelly and R. J. Vinson

A. Introduction14’15’16

The transformation matrix relating vehicle-fixed coordinates to
space~fixed coordinates can be calculated by several different methods.
These methods will be presented in this chapter along with the advantages
and disadvantages of each.

The two coordinate systems will be designated by the subscripts
v and s as shown in Figure III-1. The transformation matrix will be used
to transform the velocity of the vehicle from the vehicle-~fixed coordinate
system to the space~fixed coordinate system. The only transformation
necessary to perform this operation is a rotational transformation, and,
therefore, the translation transformation relating the origins of the
two coordinate system is not necessary. For this reason it is satisfactory
to assume that the origin of the space-fixed coordinate system is translated

to the center of mass of the vehicle and moves with the vehicle.

17
B. Rotational Matrix

The rotational transformation matrix

€11 €12 €13
€ = 21 °22 c23], (111-1)
€31 €32 €33

21
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is a 3 x 3 matrix used to transform the velocity outputs of the PIGA's
from the vehicle-fixed coordinate system to the space-fixed coordinate

system, that is,

. 7] . 7]

Xg €11 1o 13| | %

YS = C21 C22 C23 YV . (III-Z)
Z c c c

L 8] 31 32 33 |V

This rotational matrix must be calculated in real time by means of a
digital computer device on board the vehicle.

The rotational matrix may be calculated by any of the following
basic concepts:

1. Direction cosines,

2. Euler angles (three and four gimbal concept),

3. Four parameter methods (Euler parameters, quaternions, and

Cayley-Klein formulation).

In each case the rotational matrix is calculated using a set of
differential equations whi;h require as inputs the angular rates of
rotation of the vehicle about the three vehicle-fixed coordinate axes,
which can be obtained from the SAR's. The development of each as is
pertinent to this study follows below. This presentation is intended

only as a compilation of previous work.
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1, DIRECTION COSINES

Consider a vector r in the vehicle coordinate system as
r =X_i, + iy +2yky, where ;v’ jy» and k; are the unit vectors along
the Xy,Yy, and Zy axes respectively. It is desired to express this
same vectorin the same space coordinate systemas r = X i, + Y jg + &k,
where ES,'JTS, and k, are the unit vectors along the XS, Y, and Z, axes

respectively. This can be accomplished by expressing Xgs Vg and zg in

terms of Xys Yy and z, as

»
il

s Xy cos a3 + Yy, cos ay + z, cos aj

<
7]
1l

X, €os B1 + ¥y, cos B9 + 2z, cos B3 (I1I-3)

N
I

s )g,cosY1+yV cos Yo + z, cos y3 ,

where

ai = angle between i, and 1
ay = angle between i_ and j
ay = angle between i and k
Bl = angle between 3. and i
By = angle between and j
33 = angle between jg and k,
Y1 = angle between k  and Iv
Yo = angle between k. and

Yq = angle between k_ and ?v .
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(ITI-1) can be expressed in matrix notation as

o _ . I
Xg 11 €12 €13 Xy
Ys = €21 €22 €23 Yy ' (11II-4)
Lfs €31 €39 €33 Zy

where the cij's are the direction cosines and are

cC. . = cos a,
1] b
c,. = COS 3,
23 j (ITI-5)
C3j = COS Y for j =1, 2, 3.
The matrix,
€11 €12 €13
C= (e €22 €3} » (11I-6)
| 31 €32 €33

is the rotational matrix that transforms the vector r from the vehicle
coordinate system to the space coordinate system. C is an orthogonal
matrix,and, therefore, must satisfy all of the properties of an orthogonal
matrix.

The elements of the transformation matrix can be expressed in terms
of the dot product between the unit vectors of the two coordinate systems.

The dot product is defined as: a * b = |§ngl cos 8, where 8 is the

angle between a and b. Thus, in terms of the dot product,
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€11 T -]T‘v s

c1g = dy * i

€13 © EV ’ ;s

€21 ~ zv ) Es

Cog = 3; " g (I11-7)
cp3 = ky * g

€31 = E§ ] Es

¢33 = 3y " Kg

c33 = Ky - kg

The elements of the C matrix can be obtained by integrating if the
time derivatives of the direction cosines are known. The time derivatives
of the direction cosines can be related to the rates of rotation of the
axes in the vehicle coordinate system, and to the instantaneous values
of the direction cosines. Since the rates of rotation of the axes of
the vehicle are measured,the on-board computer can calculate the
instantaneous C matrix.

To show the relations between the time derivatives of the direction
cosines, and the rates of rotation of the axes of the vehicle requires

the definition,

I 2 ML (111-8)

where ¢x’ ¢y’ and ¢  are the angles of rotation about the axes of the

. .

vehicle and ¢x’ ¢y, and ¢, are the rates of rotation. The relatiouns
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between the unit vectors in the two coordinate systems are

oo

°11

c
21

| ©31

Differentiating both

—

€11
21

€31

C

12

c
22

C

32

€13

c
23

€33

- - =

(1I11-9)

sides of (III-8) with respect to time gives

€12

€13

23

€33

-

[

k
v

€11

21

€31

€12

22

€32

-
€13

d (T4
Fraa
d -~

iy

d

FrCe)

(III-10)

Since the length of a unit vector does not change, and since the direction

of the unit vectors in the space coordinate system do not chenge; the

time derivatives on the left of (III-10) are zero. Therefore,

(o

11

€21

(o

31

C

12 13
€22  ©23
€32 ©33

(=]
1
v

Iy

k
v

€11 ‘12
€21 ©22
C (o4

731 32

From the definition of the derivative of a unit vector,

(III-11)
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L T &

Sy =T n b by 6| -ig- i
dc ‘v iy X y z = Pzly ka’
1 0 0

L. —
v v ky
d =y _o.= _ |: ; : - T ;T
E(Jv) =®x jy = |9 ¢y ® = 0k - 05y,
0 1 0
L —
and Ex 3 T (11I-12)
v v v
Lky=oxk = |6, o | =071 -473
dt''v v b4 y z yv xv"'
0 0 1
L -

Substituting these expressions in (III-11), the following set of equations

may be obtained.

11 = ®12%; ~ c13%y
€12 = ©13% ~ “11%,
[} =C. -C.

13 11¢y 12°x

21 = ©22%; T 3%y
2 = ©23% T 212 (I11-13)
(o4 —Cé-c.

c = o
23 21y 22 x
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C31 = C32¢z - C33¢y
C32 = C33¢x - 031¢z

c33 = ©31%y - c32%

These nine differential equations may be integrated by some numerical

technique to obtain the new C rotational matrix.

2. EULER THREE ANGLES

Euler has shown that it is possible to go from one coordinate
system to a second specified system by three distinct rotations. It is
a simple matter to compute the matrix for each rotation, and then to
miltiply them together in the proper order to obtain the total
rotational matrix.

Consider first a rotation about the Zj axis by an angle ¢z‘ The
result will be the X'Y'Z' coordinate system as shown in Figure III-2a.
Next a rotation about the X' axis by an angle GX as shown in Figure III-2b.
The new coordinate system is X"Y"Z'". The last rotation is about the Y"
axis by an angle Oy- Figure III-3c shown the final rotation and the coori-
dinate system is the XY,Z, system,which is the vehicle-fixed system.

Consider first, the rotation through the angle which is shown in
Figure III-2a. If this is viewed from above, transformation of some
arbitrary vector R would appear as shown in Figure III-3a.

It can be seen from the geometry of Figure III-3a that the new

X', Y', and Z' components are related to X,, Yg, and Z by the following

S

matrix equation

X! cos 9, sin ©, 0 XS
Y' = |-sin 6, cos O, 0 Ys . (I11-14)
YA 0 0 1 Zg



30

Now the rotation of Figure III-2b may be viewed from the front along

the X' axis, and Figure III-3b is obtained. From the geometry of this

figure, it may be seen that

— - — = A
Xll 1 o 0 X'
| = |0 cos g sin 0, | |¥'| - (I11~15)
z 0 ~-sin © cos 6 z'
X

; s
The final rotation may be viewed from the front, along the Y" axis,

as in Figure III-3c. From the geometry of this figure it can be seen

that
- — e -
EXV cos Oy 0 -sin ey X"
Yyl = 0 1 0 " . (111-16)
- 1”
Zy sin 6y 0 cos ey Z

To determine the total transformation matrix which results from these
three rotations, it is necessary only to multiply the three individual

matrices in the correct order. 1f (d6) is the product, then

X, Xg
Y,| = o) |Yg| - (I11-17)
Z"_j |_ S|

Y| = © | Y] - (111-18)
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Fig., III-3--Transforration of Arbitrary Vector R
Showing Fuler Angles,
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(C) may be determined in one of two ways; either obtain (d6) and then

take the transpose of (d8), since (d0) is orthogonal; or, take the

transpose of the three matrices that give (d©) and then multiply in

reverse order.

sin B,

0

which gives

If the latter method is used, then

—
cos ez -sin ez

cos ez

0

cos

sin

cos

sin

sin

—
1 0
0 cos Oy,

in
s ex

0
L

-s5in ez cos 9

cos ez cos ey

sin ©

y

0 rﬁos 6 0 sin 6
y y
~-sin ex 0 1 0
cos ex -sin ey 0 cos ey
4 L
(111-19)
cos 9, sin ©
4+sin 6, sin ex cos ey
sin 6, sin Gy
-cos 6, sin 64 cos ey °
cos O_ cos Gy _
(I11-20)

Since the position of a coordinate system may be specified in

terms of Euler angles, the rate of rotation of that coordinate system

must be related to the rates of change of the Euler angles.

relationship will now be investigated.

This

It has been shown that a vector can be associated with & rate of rota-

tion.

The vector is directed along the instantaneous axis of rotation,
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and is equal in magnitude to the rate of rotation.
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Thus, each of the

Euler angle rates may be associated with a vector along the axis of

rotation.

Observe that the vector associated with the ez rotation of

Figure III-3a is directed along the Z1 axis and points out of the

page if 6, is positive.
84 vector is in the positive X' direction.

rotation due to the Oy vector is in the positive Y'" directionm.

Similarly, the rate of rotation due to the

Finally, a rate of

These

Euler angle rates must be transformed to the vehicle coordinate system

in order to relate the vehicle angular rates to the Euler angle rates.

The rotation matrices (III-19) previously derived may be used.

the ©, Euler angle rate gives

or

cos ey

© ©
il il

d)ZV

0 -sin 6

0 cos ey 0

(-cos 64 sin ©

- -

et

y

1 0 0

L
r

y) 2

(sin &) &,

(cos 64 cos ey) 5.

The éx Euler angler rate gives

cos ey

0

sin ey

1 r

0 -sin ey 1
1 0 0

0 cos ey 0

cos 9“

~sin ex

b

cos ©
X

-sin ex

sin ex

cos 9
X

sin ©
x

cos ex

Therefore,
cos O gsin ©
z -/
~sin ez cos ez
L. 0 0
(I111-21)
(I11-22)
-,
ex
0 ,
0
-
(I11-23)

il |
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0

e 6, Euler angle rate gives

(cos B

y) éx’

0,

(sin ey)ex .

cos ey

0
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e —

-sin ey

0

cos ©

| <

(IT1-24)

(III-25)

(IT1I-26)

Adding the components of the vehicle angular rates, the following matrix

equation is derived.

ol

X

S o

y

¢Z
L.

-

cos 9
= 0

sin ey

b

-sin ey

sin ex

cos ey

—

cos ex

cos ex

p—

S

S

5]
L

]

X

y

z
J

(I11-27)

But the vehicle angular rates are known, and the Euler angle rates are

ne

eded.

They can be determined by taking the inverse of the above
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matrix. Therefore,

n — , - [
O cos By 0 sin ey L
ey = sin ey tan Oy 1 -cos ey tan ey ¢y
é -sin © 0 cos © ¢
z y/cos Q{ y/cos GX z

(III-28)

From these equations, it is easy to see the difficulties which arise

when ©, approaches 90°. TFor this value of 9,» both éy and 6, are

indeterminate. The three differential equations obtained from (III-28)
may be integrated to obtain the new Euler angles. These may be

substituted into (III-20) to obtain the new C rotational matrix.

3. EULER FOUR ANGLES

In an effort to avoid the singular point as described in Euler
three angles, a redundant fourth angle will be added and the rotation
of © will be limited. This fourth angle, Oox? will be a rotation

X

about the X, axis and will have an unlimited rotation. The previous

O, will be called O41- The C matrix for the four angle system will be

C Matrix 1 0 0
C = | For Three 0 cos O, sin eox (I111-29)
Euler Angle Case 0 -sin O,  COS eox

Therefore the new C matrix will be

€11 €12 13

€31 €32 €33
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where

€11 = cos §, cos ey - sin 6, sin exl sin ey,

C1g = - sin ez cos exl cos eox + cos ez sin ey sin eox
+ sin 6, sin 6,4 cos ey sin Box?

c13 = sin ez cos exl cos eox + cos ez sin ey cos eox
+ sin O, sin 6,7 cos ey cos eox,

Cop = sin ez cos ey + cos 6, sin exl sin ey,

Cgg = coOS ez cos exl cos eox + sin ez sin ey sin eox
- cos ez sin le cos ey sin eox,

Cpg = - cos ez cos exl sin ecx + sin ez sin ey cos eox
- cos ez sin exl cos ey cos eox,

€33 = - cos le sin ey,

c3p9 = sin exl cos eox + cos exl cos ey sin © .,

c33 = = sin exl sin eox + cos exl cos ey cos eox'

Now each of the Euler angle rates must be related to the vehicle angular
rates. As was shown in the preceeding section on Euler three angles,
each of the Euler angles may be related to the vehicle angular rates

by transformation matrices. Therefore, the components of the vehicle

angular rates caused by 6, are given by:
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0 0 cos © 0
y

cos © sin © 0
ox 0X|

-sin eox cos eox sin O

which reduces to:

©
I\

<
It

zv

(-sin ©

y cos exl) 9,,

[y

-sin ©
y

cos O 0

1<

cos exl

-sin 641

(sin exl cos eox + cos ey cos exl sin eox) ez,

(-sin O,y sin ©_, + cos ey cos O, cos eox) o,.

o |

sin exl

cos Oxl

(I11-31)

(1I11-32)

Similarly, the components of the vehicle angular rates caused by éxl are

given by:

o
¢

cos ©
0 0 y

i 0
cos eox sin eox

-sin 6px cos Byx || Sin ey

JL

which reduces to:

(cos ey) Ox1>
(sin O, sin ey) éxl’

(cos eox sin ey) Ox1-

=
-sin ©

0 sin y

1 0

0 cos O

Y

(I11-33)

(I11-34)
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The components of the vehicle angular rates caused by Gy are given by

yv

YA

1 0 0
0 cos 95 sin eox

0 -sin eox cos eox

(III-36)

Adding the components of the vehicle angular rates caused by all four of

the Euler angle rates gives:

which may be rewritten as:

X"Yox

- —_ — -
1 0 cos Gy -sin ey cos exl ox
0 cos ©ox sin 6 __ sin ey (sin 6,7 cos 6 Oy

+cos Gy cos O47 sin eox)
0 -sin 6,3 cos &, sin ey (cos Gy cos exl cos O 041
-sin 6,7 sin eox)
O
L S B
(III-37)

— — -
cos ey 0 -sin Sy cos .4 ] %1
sin O,4 sin ey cos O, (sin le cos eox ey

4cos ey cos O49 cos eox) '
cos O, sin ey -sin 6  (cos ey cos exl cos O . t?z
-8in © sin 6 ) -
x1 ox

T (I11-38)
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To determine the rate of change of the Euler angles with respect to the

vehicle angular rates, the inverse of the above matrix must be determined.

Therefore,
- - _ .
O b13  byo b13_1 d’x.' eoj
éy - by; b2 b23 ¢y , (I11-39)
o, b3 b3y bs3 *2

where
bj1 = cos ey,
b12 = sin ey sin eox,
bj3 = sin ey cos O, »
byy = sin ey tan 6,74,
b22 = coSs ey tan exl sin eox + cos eox,
b23 = ~=CcOS ey tan 6,9 cos O,y = sin eox,
b3y = -sin 6y/cos O 1
b3y = cos ey sin eox/cos 6,15
b33 = cos Oy cos eox/cos 0,1+

Three differential equations may be obtained from (III-39), but
it should be noted that besides the angular velocities of the vehicle,
an additional angular rate of eox must be known. This last rate may

be obtained from the gimballing arrangement between the engines and vehicle.
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4, Four Parameters

In this section, three different methods of obtaining the four
parameters are developed. These three methods (Euler parameters
Cayley-Klein parameter, and quaternions) lead to the same set of
differential equations. The last part of this section develops
the relationship between the four parameters and angular velocities.

Euler Parameters

Euler's Theorem: Any real rotation may be expressed as a

rotation through some angle, about some fixed agg;.
Consider the angles p, @, B, and y where p is the angle of
rotation and @, B, and ¥ specify the fixed axis of rotation. Let
X Y,Z, be an additional coordinate system fixed at the origin of
the XyYvyZv system. The Xr axis is the axis of rotation and makes
the angles of @, B, and 7 with Xy, Y,,, and Z; axes respectively.
In addition the Yr axis is restricted to the Xva plane and, therefore,
is perpendicular to the Z; axis. The rotation of the XY Z, system
through the angle p may be viewed as the result of three rotations:
(1) rotation of the XY, Z, system into coincidence with the X\YyZy
system (A rotation), (2) rotation through the angle p about the X,
axis (R rotation), and (3) the reverse of (1) to restore the original
separation of the X Y Z system and the XyYrZy system (AI rotation).
The matrix for each of these transformations is developed, and the

three may be multiplied together to express the total transformation.
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Consider the first transformation from the XVYVZV system into
the X Y, Z system, where &, B, and 7 are the angles between the X,
axis and the Xy, Y, and Z;, axes respectively, then the a11> 349> and
a]3 are direction cosines, and since the Y, axis is perpendicular to

the Z, axis, aj3 = 0. Therefore, part of the first transformations is

[cos a cos B cos ;ﬁ
A = a5, 2, 0 . (II1-40)
231 232 433

It is possible from orthogonality conditions to complete A.

f;os a cos B cos 7—]

A = Teos B csc v fcos Q csc ¥ 0 . (III-41)

Tcos @ cot ¥y Tcos B cot ¥ Tsin v

Since the above matrix must reduce tc the identity matrix when Q
becomes zero and y and B are equal to 90°, the correct sign may be

determined. The result is

— -1

cos & cos B cos vy
A = -cos B csc vy cos & cs¢ y 0 . (I1I-42)
-cos & cot y -cos B cot ¥y sin y




s

it

43

The second rotation, through the angle u, about the X, axis is simply

1 0 0
R = 0 cos sin . (III-43)
0 -sin p cos [

The last rotation is the inverse of (A) or (A)I. Thus, the general

transformation is given by

c

WI®®@ (TT1-44)

This is similarity transformation and the trace of a matrix is

invariant under a similarity transformation, that is,
cq1 + €99 t €33 = 1+ 2 cos | (III-45)

so the angle of rotation may be obtained directly from the diagomnal

elements. Carrying out the operations in (III-44) gives

11 €12 €13
c = 51 Coy Cyq s (III-46)
€31 €32 €31




where

eq; = 1- 2 sin® (u/2) sin

cyp = 2(sin?(p/2)cosd  cosf + sin(u/2)cos(p/2)cosy)

¢13 = 2(cosd cosy sin®(u/2) - sin(u/2)cos(p/2)cos(u/2)cosp)
= 2(sin®(u/2)cos® cosp - sin(u/2)cos(u/2)cosy)

1 - 2sin®(/2)sin?p

2(sin2(u/2)cosB cosy + sin(p/2)cos(u/2)cos®)

T T T T I S ama——
0 0 0
N N N
w N bt

! I fl {

€37 = 2{cosq cosy sinz(u 2) + sin(u/2)cos(u/2)cosB)
c = 2(sin2(u/2)cosB cosy - sin(u/2)cos(u/2)cosq)

= 1 2sin?(u/2)sinly.

If the following substitutions are made,

£ = cosa sin(u/2)
N = cosp sin(u/2)
& = cosy sin(u/2)
X = cos(u/2),

the matrix of (III-46) becomes

€11 =
¢l = 2(&n + 8X)
c = 2(t + 7%)

13
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C21 = 2(§n = 6X)
Cop = 2 + nz - 82 4 %2
Cpy = 2(nd + £X)
€33 = 2(& + 1X)
€39 = 2(nd + £X)
cyy = -tF -2 40?4 X2, (I11-47)

These four parameters are called the Euler parameter. It may be seen

that they obey the relationship

"+ 2 +8% + X% = 1. (I11-48)

Cayley-Klein Parameters

In the Cayley-Klein development of the four-parameter system, it
is found that a 2 x 2 complex matrix may be used to represent a real

rotation, rather than a 3 x 3 real matrix. Consider such a matrix

(1),

H = . ( ITI- 49)

The requirement placed on this matrix is that it be unitary, which is
to say that the product of (H) and its conjugate transpose must yield
the unit matrix. In addition, it is required that the determinant of

the matrix (H) have the value +1. The unitary condition allows +1
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for the determinant, so this is an additional requirement. The

unitary condition may be written as

. h h h 1 0
11 1 .
* 2 % 1 12 = . (111-50)
hio Ry hyy By, 0 1

Expanding and equating components gives

*

hyy by
*

hyp hyp F
¥*

by, By *

e ¥ 7
hio" hyy #

*
hyp hyyp = L
*
hyp By, =0,
*
hyy By = 0,
“ho X _h. - -
hy* hy, = L. (111-51)

The second and third equations are the same, being merely complex

conjugates of each other. The first and fourth equations have no

imaginary component

and imaginary parts

, whereas the second (or third) has both real

Therefore, the three independent equations

-

contain four conditions. These, together with the determinant

requirement that h1

1h22 - h21h12 = +1, make it possible to

determine certain relationships among the four quantities hmn' it

may be shown that h

*
=h , and that h, = -h12*, and thus the

22 11 21
matrix may be written as
h h
H = 11 12* . (111-52)
*
-h12 h11
The quantities hll’ h12’ h22 are usually referred to as the Cayley-

Klein parameters,

It will be noted that they are complex numbers.
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While it is convenient to use them as such in analytical operations

(and this is the purpose for which Klein developed them), a physical
computer must treat complex numbers in terms of their real and imaginary
parts. Therefore, it is convenient to introduce four other quantities

defined as follows:

h = e + ie
11 1 2

h =e + ie (11I-53)
12 3 4

where the e's are all real numbers, and i is the square root of -1,

Using these definitions, the matrix (H) may be written as

H o= |1 2 3 4 (11I-54)

Now consider another complex matrix (P), which has the form

z X - iy
P = (III-55)
x + iy -z

where x, y, and z are real numbers. It will be noted that the
matrix (P) is equal to its own conjugate transpose, therefore, it is

Hermitian. Now consider a transformation of (P) of the form
P' = @@@E)@)T (I1I-56)

where (H)* designates the conjugate transpose of (H). Since (H) is

unitary, (H)+* = (H)I, so (III-56) is

Po= mE) @ (I11-57)
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This is a similarity transformation. It can be shown that the
Hermitian property and the trace are both invariant under a sim-
ilarity transformation. Therefore, the transformed matrix (P)'

must have the form

z' x - iy'

P’ = . (II1-58)
x' + iy’ -z
The fact that the determinant of (P) must equal the determinant of

(P)' gives

*'2+'y2 2

’+ zz = ’xvz ’+ y/T "_i_ zr2_ - o ) (III—SQ)

If x, vy, and z are viewed as components of a vector, then (III-59) is
the requirement that the length of the vector remain unchanged.

(III-57) may be written

— p—

z x' - iy e + ie, ezt iey z x - iy
x' + iy! -z -eg + ie, ey - e, x + iy -z

e1 - ie2 -eq - ieZl

(I1I-60)
ey - ie eq + ie
L_3 4 1 2__
If the operations of (III-60) are carried out, it is found that
Vo2 (el a2 02 2y -
X (e1 -e)-e te, Ix 2(e1e2 + e3e4)y + 2(e2e4 e1e3)z,
v ) 2 2 2 o2y 4o
y 2(e3e4 elez)x + (e1 e, + e, e, )y (e2e3 + eleA)z,
.o i 2 .2 _ .2 _ 2
z' = 2(e1e3 + ezea)x + 2(e2e3 eleA)y + (e1 + e, e, e, )z.
(111-61)

Fthaebaanagii
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These equations represent a linesar transformation between the
components of x, y, and z, and the components of x', y', and z'.

The matrix for this transformation is

.2 2 _ 2 2 _ 7]
(e; e, e, + ey ) 2(e1e2 é+ e3e4) 2(e2e4 e.e, )
- _ 2 2 _ 2
C 2(e3e4 elez) (e1 e2 + e3 e4.) 2(e2e3 + e1e4)
2(e.,e, +e.e,) 2(e,.e - e.e,) (e 2 + e 2 e z _ e %
| 173 274 273 174 1 2 3 4_1
(III-62)

It may be shown directly that this matrix satisfies the orthogonality
conditions, but it is also proven from (III-59). (III-60) shows
that the nine direction cosines may be expresséd in terms of the

four e's. If (III-53) is substituted into (III-51) it is found

that

e2 +e?2 +e?2 +e2 = 1, (I11-63)

and therefore, only three of the e's are independent. The identity
of these four quantities with the Euler parameters is obvious.

Comparison of (III-40) and (III-45) gives
e. =X, e =29, e =7, e =t. (1I1I- 64)

It is also possible to view this process as two successive
rotations in terms of the e's themselves. Consider one rotation

defined by el, ez, e3, and ?4' After this, another rotation is

performed which is described by el', e',e', and 64" There 1is

2 3
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1 "

"e" e which describes the

1’ 2773

final orientation after the two rotations. This combined set may

some set of e's called e , and e4

be found by multiplying the (H) matrices of the two rotations in
the correct sequence. The equation is

—
e"+ie" e " 4+ ie™ e'+ie' e '+ ie!
v = |1 2 3 4 _ |1 2 3 4

-e3" + ie"™ e " - je " -e 4+ ie e - ie

Expanding this equation and equating components gives

1" T oepep T el T ety T g e
e = ee'4+e'e +e'e -e'e,

2 21 2 1 3 4 4 3 : (III-66)
e = e ! -e'e +e ' +e'e,

3 1 3 2 4 3 1 4 2

e" = e'e +e'e +e' -e'e,

4 2 1 4 4 1 3 2

By use of these equations, successive transformations may be handled

in terms of the e's directly.

Quaternions

The most brilliant formulation of the four parameters was made
by Hamilton in 1843. He developed a new type of entity called a

'""quaternion'". It is composed of four parts,

q = S+ ia+ jb + ke, (11I-67)

where S, a, b, and ¢ are real numbers, and the indices i, j, and k are
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defined by the following rules;
i = -1, ij =-ji = &k,
iz = -1, jk =-kj = i,
kK2 = -1, ki =-ik = j.
The conjugate of the quaternion q is
g* = S8 - ia - jb - kec. (I1I-68)

Using the laws for the indices quoted above, it may be easily shown

that

qq¥ = gq¥q = 's® +a 2y, I (III-69)

which is called the length or norm of the quaternion. If this norm

ig unity, then a special form of quaternion results, a versor. It

is possible to make use of versors to describe a coordinate transfor-

mation. The quantity § is called the real or scalar part of the

quaternion, Consider V a vector of components X, Y, and Z:

-

Vv = 1iX + jY + kZ. (III-70)
Examine the operation

where q is a versor. So far there is no particular reason to expect

that V' will be a vector, but this turms out to be the case. (III-71)

may be written as:

V' = (S - ia - jb - ke)(iX + jY + kZ)(S + ia + jb + kc)
(I11-72)
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When this equation is expanded, making use of the rules for indices,

the result is

.2 2 2

A 1[%(8 +a ~-b -c2) + Y(2Se¢ + 2ab) + Z(2ac —25b§]+
i[X(ab - 25¢) + W(s® - &® 4P Py + z(2sa + 2cb§_]+
K X(25b + 2ac) + Y(2bc - 28a) + (s> - a% - bZ + c? i]

(III-73)

This is simply a coordinate transformation whose transformation

matrix is

T;2+a2—b2-c2 . -2(Sc + ab) 2(ac - Sb) 7-TW

2(ab - Sc) 52.a24p2-¢2 2(Sa + cb)

| 2(Sb + ac) 2(bc - Sa) 52-a2-p24c2 _
(I1I-74)

The correlations with matrices derived in the preceding sections are

S = e, = X, ¢ = ey = b, b= e; =1, a=e, = €.

(11I-75)

The matter of two successive rotations may be handled quite easily.

Assume a transformed vector with the versor ql,

V! - * V . (111'76 \
q1 ql

Apply the versor q2,

V' =g % V' = q %q *V ) (III-
1, 1, 1,*4,*V q, q, 77)

New vectors are defined as q, = qz*qi*and qé =4qy qy - It may be seen
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that the relationship between q3 and q4 is given as

q.¥q.* =gq

21 4 (11I-78)
d *q ¥ =
and 49,79 9%,
and since q2 is a versor, q2q2* = 1. Therefore, (III-78) reduces
to
* = . III’
9 4,9, (I1I-79)

Now is applied on the left,
ql P

* = = 1 = ) III' )
4% 4,9,9, 94,9, - (I1I-80)

so that q4 must equal the conjugate of q3. This means that

Vv = g*Vaq. ' (I11-81)
3 3
The equation q3 = qlq2 may now be written as
S +ia + jb 4+ ke = (S +ia_+ jb_ + ke )(S + ia + jb + kc ).
3 3 3 3 1 1 1 1" 2 2 2 2

Expanding this equation and equating like components gives:

S = S 8§ - aa -bb -cc,
3 12 12 12 12
a = S a +Sa 4+bc -c¢cb, ,
3 12 21 12 12 (III-82)
b = Sb -ac +bS +ca,
3 12 12 12 12
c = Sc +ab -ba +cS.
3 12 12 12 12

These equations are identical with (III-66) which was developed in the
same connection by use of the Cayley-Klein parameters. Thus, the
quaternion method leads to the same results as did the preceeding

developments.
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Infinitesimal Rotations

The primary interest is in determining the orientation from the
rate of rotation through a process of integration. Accordingly, it
is necessary to relate the rates of change of the four parameters to the
rates of rotation of the axis system.

It has been shown that an orthogonal transformation may be
represented by a complex matrix having certain properties. It is
now of interest to investigate this matrix when an infinitesimal
rotation is performed. First,assume that this infinitesimal rotation
consists of a rptgt;og through the angle A i about a line which makes
angles of @, B, and ¥ with the X, Y, and Z axes respeétivel}.ij;céli

that the matrix (H) may be expressed

ey + ieg eq + ie,z;_l
H = .
-e3 + iey eq - iep (I11-83)

Applying the geometrical interpretation of the e's from (III-64) gives

cos(AL/2) + i cosy sin(AH/2) cos B sin(A/2) 4+ i cos sin (u/2)
-cos B sin(AL/2) + i cos sin(AM/2) cos(AH/2) - i cosy sin(ﬁ“lz)
(111-8%4)
From this, it can be seen that the infinitesimal rotation may be

represented by

1+ 1 (Ap/2) cosy (A p/2) cos B+ 1 (A pu/2) cosy
-(Au/2) cos B+ i (A p/2) cos 1 - i (A u/2) cosy
(I11-85)

since cos (Au/2) = 1, and since sin (Mu/2)=~ MNu/2.
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It is expected that any matrix representing an infinitesimal rotation
will differ only slightly from the identity matrix. This is true of

the above matrix, and it may be shown more clearly by writing it as

follows:
H, =1+ (¢)
where
1 0
I =
0 1
and . - - : ] o o
i cos? cos B+ 1 cosC
) = %E -cos B + 1 cosc - i cosy ) (I11-86)

Now assume that this infinitesimal rotation takes place during a small

time interval, and that (H)' is the matrix at the end of the interval.
Then the time derivative of (H) may be written as

d = limit w' - #H | (111-87)
AL

dt At—>0

The final matrix (H)' may also be viewed as the result of two rotations,
first (H) and then (H)e‘ In other words, (H') = (H). (H). The insertion

of this value into the above equation gives

d(B) _ limit (e) (H) . (111-88)

dt At=—>0 Nt
Since (H) is not affected by the time increment, the limiting process

refers only to the quantity ii% .
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(€) 1 A i cosy cosB + i cosC
-2 A
At 2 t -cosfp + i cosx - i cosy

(I11-89)

In the limit, the quantity %;E is simply the scalar magnitude of the
ddéy do ds,

angular velocity vector. If A , and __Z2 are the
& Y dt ’ Gt dt
components of this velocity vector along the X, Y, and Z axes, then
. du _do dp _ d¢ du _ do,
evidently 4t cos@ = —E% > g oS B Hfz , and It cosy -
so that
[ ]
dé as - ad_ |
i -2 _y + i =X
limit () _ 1 dt dt dt
A =0 A 2 do d¢ do
- X + i—=X - iZ
dt dt dt
[ — (ITII-90)
Therefore,
pr——— ¢ -
i doy EEX + i E_§
déﬁ} - % dt dt dt H) . (I1I-91)
dé d¢ d¢
- + i —X - i —2
dt dt dt

It is also possible to show, by a straight forward limiting process,
that the time derivative of a matrix is also a matrix whose elements

are the time derivatives of the elements of the original matrix.

Therefore,
.. ) do,, s ) _
é1 + iey e + ie R T tigR|| ey tiex e+ ey
g tid, & -ie| -y 41 % o1 % ||egtie, e - e,
2 dt at dt

(I11-92)



7T NN W T _—— T T L J _— L] —— [ | L] L] L L] L | L/

57

Expanding and equating like terms yields

dé d¢ dé
X z

2 —
281 =-e4 g - €3 d& - €2 4t ’

. dd)x dé d¢z
) =-e3 F tea tel g

d¢x do d¢z
263 = t+ejy TS + eq ac - e I N
do_ do d¢z
2é = _— - 4 .
R T 273 T3 W& (111-93)

These are the equations which are used to compute the four parameters in

an actual simulation.



APPENDIX A

MATRIX OPERATIONS AND DEFINITIONS 12»20,21,22

A system of m nonhomogeneous linear equations in the n unknowns

X1, Xga--.. Xp is

allx1 + a12x2 + ee. + alnxn = yl

7a721x1 + azzx2 +, ",' +7 a, x

]
<
N

2. 2n n (A-1)
= EaS + oo e + = -
amlxl am2x2 + amnxn ym
This system of equations may be represented by the matrix equatiomn
[(a a a, | [%] EA
11 12 In 1 71
41 222 %am | | ™2 Y2
. - |- : (a-2)
%n1 %m2 e % *n Ym
An abbreviated symbolism for (A-2) is
AX=Y ; A= (aij)m,n s (A-3)

58
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which may also be written as
n
i = Z aijxj i=1, 2,...,m.
j=1

Definition 1.1
A matrix is an ordered array of m x n scalars aij arranged in m
rows and n columns. The scalar ajj in row i column j is called
the ij entry of A, If i = j, then ajj lies on the diagonal;
if i # j, then ay; is either above (i < j, superdiagonal) or
below (i > j, subdiagonal) the diagonal.

Definition 1.2

The trace or spur of a matrix is the sum of the diagonal entries.

n
trace(A) = spur(A) = Za .
3]

j=1

Definition 1.3

A square matrix is a matrix with m = n.

A row vector is a matrix withm = 1.

A column vector is a matrix with n = 1,

Examples:
a a a a a
11 12 11 12 11
a a a
21 22 21

SQUARE MATRIX ROW VECTOR COLUMN VECTOR
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pefinition 1.4
A null matrix is one in which all entries are zero.
Definition 1.5

A matrix is called

1. Diagonal, if aj5 = 0 for i#j
2. Superdiagonal, if ajy = 0 for i>]
3. Subdiagonal, if ajj = 0 for i<ij
4. Upper-triangular, if ajj = 0 for i>]
5. Lower-triangular, if ajj = 0 for i<j
6 ;lr‘ridiagénawl,” if ajy = 0  for |’i - jl >1,

Definition 1.6

The identity matrix or unit matrix (I) is a diagonal matrix with

its diagonal entries equal to one.

100
I=1]010 = (g -
6 7
001
where 513- is the Kronecker delta symbol and
1 if i =3
Sij .
0 if 1 # ]

Definition 1.7

The transpose of matrix A, (AT), is the matrix obtained from A

by interchanging rows and columns. (The first row becomes the

first column, the first column becomes the first row, etc.)
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Example:
211 412 413 411 21 431
A= a a a ; AT = a a a
= 21 22 231 ° 12 22 32| °
431 439 433 413 423 433

Definition 1.8

If the entries in matrix A are complex, then the conjugate trans-

pose of A, (ACT), is the transpose of A with the sign of the
imaginary part ofall entries changed.
Rule 1.1 Matrix Addition
Matrix A is added to matrix B to give the sum, matrix C, by
adding the aij entry to the bij entry to give the i3 entry 3 that is,

c = a + b It is obvious that matrix addition is defined

i3 i g
1] 13 11

only for matrices of the same dimensions.

Rule 1.2 Matrix Addition
The distributive laws hold for matrix addition. If d is a scalar
then
d(A + B) = dA + dB
and
(dy + dp)A = d1A + dyA,

Rule 1.3 Matrix Multiplication
To multiply two matrices together to obtain the third; multiply
the elements of row i of the left factor by corresponding elements
of column k of the right factor and add to obtain the ij entry of

the product, i.e., if AB = C, then



Rule

Rule

62

The product AB is defined only when A has as many columns as B
has rows. Then AB has as many rows as A and as many columms as
B.

1.4 Matrix Multiplication

The distributive law holds for matrix multiplication. Therefore,

A(B + C) = AB + AC
and
(A + B)D = AD + BD

whenever the products are defined.
1.5 Matrix Multiplication
The commutative law AB = BA holds only in special cases, but does

not hold in general.

Definition 1.9

If X and Y are n x 1 column vectors, and XT and YT the corresponding

1 x n row vector, the product

XY = YX = x + ... + Xy

171 2Y2 n’n

is a scalar called the scalar product of X and Y. The related

quantity

XCTY = (Y ;) = x + x + ... + X ¥
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is called the complex scalar product of X and Y.

Definition 1.10
The length, or norm |X|, of a vector X # 0 is the positive
. _ CTX .
quanity IX‘ = X >0. I£fX =0, |0| = 0 and X is a null vector.
A vector of unit length is called a unit vector.
Definition 1.11
The matrix A is called idempotent if A2 = A.
Definition 1.12

A matrix A is said to have an inverse, (AI or A—l), if AAI = 1I.

Definition 1.13

A matrix A is said to be invertible or nonsingular if it has an

inverse, singular if it does not.
Definition 1.14

Two column vectors X and Y are called orthogonal if XTY = 0;

CT

complex orthogonal if X 'Y = O.

Definition 1.15

If a matrix X is such that xT = XI, then X is orthogonal.
Definition 1.16
The matrix A is called normal if AACT < ACTA.

Definition 1.17

The matrix A is called hermitian if ACT - a.
Definition 1.18
. . . . CcT .. CcT I
The matrix A is called unitary if AA™" = I, that is if A™" = A".

Definition 1.19
Any transformation of a matrix having the form

A' = BABI
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is known as a similarity transformation and the

trace (A') = trace (A).
Definition 1. 20
A square matrix A has associated with it a scalar quantity called

the determinant of the matrix, and is denoted by det(A) or lAI.

n n
o1 A

det(A) = >_' ajj Vij = Z’ aj; VJ_J
i=1 i=1

th

where vij is the cofactor of the ij element of A as defined in

Definition 1.22,
Definition 1.21

The determinant of the (n-1) x (n-1) matrix obtained from a n x n

. . .th .th .
matrix by crossing out the i row and j column is called the
. .th

minor of the 1] element and is indicated by Mij'

Definition 1. 22
. .th . . .. th
The cofactor of the 1j  element is the minor of the 1ij element
i+j . it+j . |

multiplied by (-1) ; i.e., Vij = (-1) Mij' The cofactor is a i

signed minor. ‘
Definition 1. 23

The adjoint of matrix A, adj(A), is the transpose of the matrix

obtained by replacing each term of A by its cofactor.
Definition 1. 24 |
The inverse of A is obtained by dividing each term in the adjoint
of A by the determinant of A.

AI _ A—l _adj(a)

|A]




APPENDIX B
NUMERICAL INTEGRATION 2324

"Numerical integration is a process of computing the value of

a definite integral from a set of numerical values of the

integrand."”

A list of the most commonly used integrating techniques along
with a short explanation of each is presented in this section. Proofs
and derivations of the methods given can be found in the references
listed at the end of this report in the Selected Bibliography.

Rectangular Rule

When the rectangular rule is used for numerical integration, the
function is approximated by a staircase curve made up of a set of
constant step functions. 1In graphical terms the area under the curve
over the interval, At, is assumed to be equal to the area of a
rectangle. If the interval is very small, this numerical_integration
scheme is quite good.

To apply the rectangular rule the derivative of the function,
én, must be known where ay is the value of the integral at time nAt,

and

nAt .
a, =.[ a, dt + aq = At(ay) + ah-1° (B-1)
n-1)At

65
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Newton's Formula

When Newton's formula is used for numerical integration, the

function is approximated over each interval by a suitable polynomial.

Newton formulated the following general formula for obtaining this

polynomial?
to+DAt n2
an-ao=jadt=At nao+?-A,ao
to
2 3
+;‘".r£_.n_2\Aa°+1i_n3+n2Aa0
W3 2 ) 2! \ & 3!
, g 4
L o3 1’ 42838
NS 2 3 4%

‘ 6
S n 5 225 4
+ !‘7— - _—E_'+ 17n” - s 3

where

e
[
o}
Il
o)
N
]
N
o
[y
+
]

>
w
]
o
w
1
(98]
)
)
+
L
o
=
|
w

and so forth.

By letting n

than n, various quadrature formulas can be obtained.

+ ZZé-n3 - 60n2)

Aéao

(3-2)

1, 2, ... in (B-2), and by neglecting the terms higher
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Letting n = 1 gives the trapezoidial rule:
At
an = ap-1 + 5 (apn + ap-1) . (8-3)

Letting m = 2 gives Simpson's rule:

o
[

At
n = &p-2 + 3 (an + 4an_1 + an_z). (B-4)

Letting n = 6 gives Weddle's rule:

- Nt
3y = 3.6 + T (@, + 5a,_1+a, ,+6a, _3+a _,+5a +a o).

(B-5) -

Method of Weighted Averages

A good simple method of numerical integration is the weighted
average method. This method is based upon the assumption that a
function changes the same amount in the following interval as it does

in the previous interval. Therefore,

or
a1 =2 -a _; (B-6)
and the average
o I I o |
a = = (B-7)
2 2
so that

t
ap = ap-] + %_(3% - ap-1)- (B-8)
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Runge=Kutta Method

The Runge-Kutta method is essentially a refinement of the
averaging techniques. Nearly every text on numerical analysis has a
section on Runge-Kutta methods, and a discussion of how they are derived
for different order approximations. The most common one is the fourth-
order approximation. Consider the differential equation:

d .
;f =y = f(t,y) (-9)

with y = y, at t = to. The increment for advancing y is given by

- 1 B - e . - _ -
Ay = . (k; + 2k, + 2k, + k4) (B-10)
where
kl = At f(toa yO)’
At ki,
k, —-Atf(to+-2—,yo+2),
- At ko
k3 = At (e, + 55, yo+-2—),
k, = At f(ty + At, y, + ki).
The new values of t and y at the end of the interval At are
ty =t +At (B-11)
o
Yy T Yo tov- (B-12)

The Runge-Kutta fourth order approximation applied to simultaneous
equations is as follows.

If

x - X = fl(t,x,y) (B-13)
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and
Goy= g (x5
dt 2 7
then
kl = At fl(to’ X s yo),
k 1
- ot 1 L
k2 = At £ (t + = > X + 7 Yy + 5>
1
- At 2 2
k3 = At £ (t + > > X + 55 Yo +357)
k4 = At fl(to + AL, x + k3, Vo 13),
Ly =ar £ (G, XO’,YQ)’, )
k 1
= At _1 1
12 = At £ (t + = R > X + 7 Y, + > Y,
k2 12
13 = At £ (t + 2L 2 s X + 5 Y, + E—D,
14 = At fZ(to + AL, X + k3, Y, + L3).
The new values of x and y at the end of the
Xy = X + Ax
y]. = YO + Ay
where
1
bx = 6(k1+2k2+2k3+k4)
i
Ay = ¢ (11 + 212 + 213 + 14).
Milne's Method
Milne's method is derived from Newton's forward interpolation
formula.

polation, and the other for checking the extrapolated value.

interval At are

(B-14)

Two formulas are used; one for integrating ahead by extra-

The two
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formulas are given below.
1 _ A
a’ ]l = a3 + 3 (2an_2 -a _,+ 2a_). (B-18)
(2) At
a4 = a1+ ;—(an_1 +4a +a ). (3-19)

The first equation is used to integrate ahead by extrapolation and
the other is used to check the extrapolated value. This simple formula
provides a check on the accuracy of each computation. If the value of

1
E = a( ) - 8(2)

B~-20
n+l n+1 ( )

becomes erratic, and no mistake has been made, then a smaller At is

in order.



APPENDIX C

ORTHOGONAL MATRIX

The rotational matrix that transforms the measured velocities
in the vehicle coordinate system to the inertial coordinate system is
a proper rotational matrix,and,therefore,is orthogonal. 1If the

rotational matrix

€11 €12 €13
o © = ey ep cp3 (¢-1)
E 7°31' °r327 W °"33 W
is orthogonal, then

c11 + czi + CSi =1
| °1§+°z§+°3§=1
* Qe “

cli + °1§ + °1§ =1

c 2 + c 2 + c 2 =1

are the six normality conditions and

71
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€111 F €122 F €123 = 0
+ =0
©11%31 T ©12%32 F ©13%33
c c +c¢c ¢ 4+ ¢ ¢ =0
21931 7 22532 7 ©23%33
c cC 4+ c ¢ 4+ c ¢ =90
11512 7 %2122 7 3132
=0

+ =
©11%3 * ©21%3 F ©31%33

c C + c_ ¢ 4+ c ¢
1213 22723 3233

are the six orthogonality conditions which must be satisfied. Nine

other relationships that must be satisfied may be obtained and are

11 ~ €22%33 T ©23%32

€12 T ©23%31 T ©21%33
€13 T ©21%32 T ©22%31
€21 T ©13%32 T €12%33
€22 T €11%33 T ©13%31
€23 T ©12%31 T “11%32
€31 T ©12%3 T ©13%22
€32 T ©13%21 T ©11%3
€33 T ©11%22 T ©12%21.

(c-3)

(c-4)



APPENDIX D

COORDINATE SYSTEMSZ7

The space-fixed coordinate system is shown in Figure D~1. The
Xy axis lies in the plane defined by the polar axis of the earth and the
launching site. X  axis is parallel to the local gravity vector at the
launch site, and is directed from the center of the earth towards the
surface near the launch site. The Zy axis is perpendicular to the X
axis, is parsllel to the aiming azimuth, and is positive down range.
The Yg axis completes a standard right-handed coordinate system.

The vehicle-fixed coordinate system is shown in Figure D-2. The
origin of thie svstem is located at the center of mass of the vehicle.
The Xv axis is directed along the longitudinal axis of the vehicle and
is positive in the nominal direction of positive thrust acceleration.
The Zv axis is perpendicular to X, and is defined by "Position 1", a
predesignated position on the vehicle. The Y, axis completes a

standard right-handed coordinate system.
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